
Randomized Hamiltonian Compilation

Christopher Kang

June 2020

Abstract

Hamiltonian simulation has enormous utility for modeling complex chemical and physical systems.
The major technique is Trotterization, which leverages the Trotter-Suzuki formulas to accurately ap-
proximate the Hamiltonian with performance asymptotically better than classical algorithms. However,
Trotterization vastly exceeds the available resources of near-term quantum chips. We derive bounds for
randomized Hamiltonian compilation [1] and compare them to Trotterization of different orders.

1 Introduction to Trotterization

1.1 Problem: Hamiltonian Simulation

The aim of Hamiltonian simulation is modeling a system’s evolution over time.

Problem 1. We are given the following parameters.

1. |ψ0〉, the initial state

2. H, the Hamiltonian

3. t, the number of time evolutions for simulation

How can we efficiently simulate:

e−iHt |ψ0〉 = |ψ(t)〉 (1)

With minimal error?

For t << 1, there are some immediate steps that can be performed. Assume that we can decompose H:

H =

L∑
j

hjHl (2)

Where Hl Hermitian with a maximum singular value of 1 and hj ∈ C. Thus, we may separate eiHt:

eiHt =

L∏
j=1

eihjHlt +O(L2t2) (3)

This follows because Hi, Hj typically do not anticommute, incurring an error that grows quickly as t
grows. as t gets large, this error quickly becomes unacceptable.

1

1.2 Trotterization

For t << 1, the error term of the prior formula is negligble. However, we are often interested in simulating
larger t. The Trotter-Suzuki formulas aim to allow for simulation when t large by segmenting the time steps
into smaller pieces.

We ‘slice’ the exponential into N terms:

eiHt = eiHtN/N =
(L∏
j=1

eihjHjt/N
)N

+O
((tΛL)2

N

)
(4)

Where Λ = maxj hj . So, say we desire an error ε. Then, we’d like:

(tΛL)2

N
≤ ε

N ≥ (tΛL)2

ε
(5)

We can then refine this restriction of N into an estimate for the gate count [3]:

Fact 1 (Gate counts). 1st order deterministic Trotter scales in

O
(L3(Λt)2

ε

)
(6)

2nd order deterministic Trotter scales in:

O
(L5/2(Λt)3/2

e1/2

)
(7)

(2k)th order probabilistic Trotter scales in:

O
(L2(Λt)1+1/2k

ε1/2k

)
(8)

Notice that even with these advanced techniques [2], the scaling is still quadratic in L. This motivates
the core question: are there ways to reduce the scaling in L, thereby allowing for reduced cost in simulating
complex Hamiltonians?

2

2 Randomized Compilers for Hamiltonians

2.1 Algorithm: QDRIFT

Random compilation is a pre-processing technique used to optimize Trotterization. Instead of directly
applying the hjHj sequentially, we randomly select and apply some number of Trotterized terms. We then
discover that the gate count has better scaling with relation to L than typical Trotterization, at the cost of
scaling with respect to t.

Algorithm 1: QDRIFT

Result: Evolution eiHt applied to ρ with some error ε
Decompose Hamiltonian into

∑L
j=1 hjHj where hj ∈ R;

Create λ =
∑
hj ;

Randomly sample N values from [1, L], each with probability
hj

λ ;

Apply the eiλHj/N exponential for every sample value above;

We begin by assuming that our Hamiltonian has been decomposed into a sum of normalized Hermitian
operators Hj , similar to in Equation (2). However, specifically note that we constrain our coefficients hj ∈ R.
From these coefficients, we create an auxiliary variable λ:

λ =
∑

hj (9)

Now, to generate the final list of operators, create a distribution where the probability of selecting Hj is
weighted by its leading coefficient:

P(U = Hj) = pj =
hj
λ

(10)

Sample from this distribution N times, producing a list of values k = {k1, k2..}. Thus, the final Hamil-
tonian components to simulate Vk are:

Vk =

N∏
j=1

eiτjHkj (11)

Where τj is a special weighting.

2.2 Identifying τ

Before we continue further analysis, we must identify suitable values for τ . We must compare the evolution
of QDRIFT (E(ρ)) to the original Trotter formula (U(ρ)). So, let us apply one term in Vk and the eiHt/N

term, and evaluate the effects:

Theorem 2.1 (Optimal τ). When we select τ as follows:

τ =
tλ

N

The error between the QDRIFT approximation E(ρ) and the original Trotterized formula U(ρ) is in the
second order with respect to t.

Proof. Let’s model the effect of this Hamiltonian on the quantum state. Because this instance is probabilistic,
we choose to use the density operator. Consider our starting state to be |ψ0〉, so ρ = |ψ0〉 〈ψ0|. We can
model the evolution of the quantum state by probabilistically applying one term of Vk:

E(ρ) =
∑
j

pje
iτHjρe−iτHj (12)

3

In comparison, we were interested in applying eiHt/N , which would have yielded the following density
operator:

UN (ρ) = eiHt/Nρe−iHt/N (13)

We’d like to compare E(ρ) to UN to identify how close our approximation is. Recall:

Fact 2 (Matrix Exponentials). For any square matrix X, we define its exponential eX as:

eX =

∞∑
k=0

1

k!
Xk

This exponential is well-defined for all matrices X.

Thus, expanding E(ρ):

∑
j

pje
iτHjρe−iτHj =

∑
j

hj
λ
eiτHjρe−τHj

=
∑
j

hj
λ

(∞∑
k=0

(iτHj)
k

k!

)
ρ
(∞∑
k=0

(−iτHj)
k

k!

)
=
∑
j

hj
λ

(1 + iτHj +O(τ2))ρ(1− iτHj +O(τ2))

=
∑
j

hj
λ

(ρ+ iτHjρ+O(τ2)(1− iτHj +O(τ2))

=
∑
j

hj
λ

(ρ+ iτHjρ− iτρHj +O(τ2))

= ρ+ i
∑
j

τhj
λ

(Hjρ− ρHj) +O(τ2) (14)

The channel we wanted to simulate UN (ρ) = eiHt/Nρe−iHt/N . Again, using the expansion:

UN (ρ) = eiHt/Nρe−iHt/N

=
(∞∑
k=0

(iHt)k

Nkk!

)
ρ
(∞∑
k=0

(−iHt)k

Nkk!

)
=
(

1 +
iHt

N
+O

(t2
N2

))
ρ
(

1− iHt

N
+O

(t2
N2

))
=
(
ρ+

it

N
Hρ+O

(t2
N2

))(
1− iHt

N
+O

(t2
N2

))
= ρ− it

N
ρH +

it

N
Hρ+O

(t2
N2

)
= ρ+

it

N
(Hρ− ρH) +O

(t2
N2

)
(15)

Because H =
∑
j hjHj :

UN (ρ) = ρ+
it

N
(
∑
j

hjHjρ− ρ
∑
j

hjHr) +O
(t2
N2

)
= ρ+ i

∑
j

thj
N

(Hjρ− ρHj) +O
(t2
N2

)
(16)

4

As noted in the paper, we’d like to identify where the difference in the density matrices E(ρ)−U(ρ) has
zeroth/first order terms which vanish. Therefore, we’d like:

i
∑
j

τhj
λ

(Hjρ− ρHj) = i
∑
j

thj
N

(Hjρ− ρHj) (17)

Thus, we’d need τ
λ = t

N , or:

τ =
tλ

N
(18)

As desired.

2.3 Bounding Higher Order Terms

Now that we have a value for τ , we’d like to identify an upper bound for ‖E(ρ)− UN (ρ)‖. We can then use
this bound to model the differences of the entire simulation, or

∥∥EN (ρ)− U(ρ)
∥∥.

First, let’s manipulate our model of the Hamiltonian on the density operator. We introduce the Liouvillian
superoperator:

Definition 1 (Liouvillian Superoperator). A Liouvillian superoperator takes an operator and returns
another [4]. For example,

L(ρ) = i(Hρ− ρH)

So that,

L2(ρ) = i(Hi(Hρ− ρH)− i(Hρ− ρH)H) = −HHρ+HρH +HρH − ρHH = −H2ρ+ 2HρH − ρH2

So, we can actually leverage it to demonstrate a rearrangement of our Hamiltonian simulation upon our
density matrix:

Theorem 2.2 (Liouvillian Representation). Given the following Liouvillian superoperator:

L(n) = i(Hρ− ρH)

We can represent the unitary channel E as:

E = eiHtρe−iHt = etL(ρ) =

∞∑
k=0

tkLk(ρ)

k!

Proof. Recall the matrix exponential forms of eiHt, e−iHt:

eiHt =

∞∑
k=0

iktkHk

k!
(19)

e−iHt =

∞∑
k=0

(−1)kiktkHk

k!
(20)

So, let’s consider the form this takes. Instead, take each term of eiHt as ak and each term of e−iHt as bk.
If we consider eiHtρe−iHt to be:

(a0 + a1 + ...+ an)ρ(b0 + b1 + ...+ bn)

5

Where n → ∞, then this is really an n by n matrix P whose values Pjk = ajρbk. Furthermore, we can
actually express bk in terms of ak:

bk =

{
ak k even

−ak k odd

By the definition of e−iHt. Thus, we define the general term of Pjk as:

Pjk =

{
ajρak k even

−ajρak k odd
= (−1)kajρak

Now, let’s substitute our value for ak = iktkHk

k! . Thus:

Pjk = (−1)k
ijtjHj

j!
ρ
iktkHk

k!

= (−1)k
ij+ktj+k

j!k!
HjρHk (21)

Let’s group these terms by j + k constant. Visually, these would be the diagonals of the matrix. Let’s
designate Cl as the sum of the terms with tl. Then,

Cl =

l∑
k=0

(−1)ktl
il

k!(l − k)!
H l−kρHk

= iltl
l∑

k=0

(−1)k
l!

k!(l − k)!

H l−kρHk

l!

= iltl
l∑

k=0

(−1)k
(
l

k

)
H l−kρHk

l!
(22)

Now, let’s compare this to the form of the nth power Liouvillian. I claim:

Lemma 2.1. The nth power Liouvillian takes the following form:

Ln(ρ) = in
n∑
k=0

(−1)k
(
n

k

)
Hn−kρHk

Proof. We’ll show this holds by induction.
For the base case, recognize that we have demonstrated this for n = 1:

L1(ρ) = iHρ− iρH
For the inductive hypothesis, assumes this holds for n. Then, we’d like to prove in the inductive step

that this holds for n+ 1. So, manipulating Ln+1(ρ):

Ln+1(ρ) = i(HLn(ρ)− Ln(ρ)H)

= i(H
(
in

n∑
k=0

(−1)k
(
n

k

)
Hn−kρHk

)
−
(
in

n∑
k=0

(−1)k
(
n

k

)
Hn−kρHk

)
H)

= in+1
[n∑
k=0

(−1)k
(
n

k

)
Hn−k+1ρHk −

n∑
k=0

(−1)k
(
n

k

)
Hn−kρHk+1

]
= in+1

[(n
0

)
Hn+1ρ+

n∑
k=1

(−1)k
(
n

k

)
Hn−k+1ρHk −

n−1∑
k=0

(−1)k
(
n

k

)
Hn−kρHk+1 + (−1)n+1ρHn+1

]

6

Now, let’s analyze the inner terms and see if they can be manipulated. Recognize, with a reindexing:

=

n∑
k=1

(−1)k
(
n

k

)
Hn−k+1ρHk −

n−1∑
k=0

(−1)k
(
n

k

)
Hn−kρHk+1

=

n∑
k=1

(−1)k
(
n

k

)
Hn−k+1ρHk +

n∑
k=1

(−1)k
(

n

k − 1

)
Hn−k+1ρHk (23)

Furthermore, recall that: (
a

b

)
+

(
a

b− 1

)
=

(
a+ 1

b

)
So,

n∑
k=1

(−1)k
(
n

k

)
Hn−k+1ρHk +

n∑
k=1

(−1)k
(

n

k − 1

)
Hn−k+1ρHk =

n∑
k=1

(−1)k
(
n+ 1

k

)
Hn−k+1ρHk

Thus, substituting this into our original equation, we see:

= in+1
[
Hn+1ρ+

n∑
k=1

(−1)k
(
n+ 1

k

)
Hn−k+1ρHk + (−1)n+1ρHn+1

]
= in+1

n+1∑
k=0

(−1)k
(
n+ 1

k

)
Hn−k+1ρHk

Thus,

Ln+1(ρ) = in+1
n+1∑
k=0

(−1)k
(
n

k

)
Hn−k+1ρHk (24)

So, by induction, we’ve demonstrated the formula for the nth Liouvillian, as desired.

Now, by Lemma 2.1, analyze the lth term of the sequence of eiL(ρ):

tlLl

l!
=
iltl

l!

l∑
k=0

(−1)k
(
l

k

)
H l−kρHk (25)

By Equation (22), Cl is:

Cl =
iltl

l!

l∑
k=0

(−1)k
(
l

k

)
H l−kρHk

Thus, Cl = tlLl

l! . So:

eiHtρe−iHt =

∞∑
l=0

Cl =

∞∑
k=0

tkLk(ρ)

k!
(26)

As desired.

7

Now that we may represent both E ,UN in convenient forms, we need effective measure of their distance.
We introduce some common norms:

Definition 2 (1-Norm). Given some matrix A, it has a 1-norm defined by:

‖A‖1 = Tr[
√

A†A]

Alternatively, the 1-Norm is the sum of the singular values of A.

Definition 3 (Infty-Norm). Given some matrix A, it has an ∞-norm defined by:

‖A‖ = inf{c ≥ 0 : ‖Av‖ ≤ c ‖v‖ , v ∈W}
Where W is the range vector space. Alternatively, the norm is the largest singular value of A.

Definition 4 (Diamond Norm). Given a superoperator P, the diamond norm of P is defined as:

‖P‖� := sup
ρ;‖ρ‖1=1

‖(P ⊗ 1)(ρ)‖1

Finally, we define a metric for the distance of the channels:

Definition 5 (Diamond distance). The diamond distance of two channels A,B is defined as:

d�(A,B) =
1

2
‖A − B‖�

Now that we’ve established some definitions, we can also begin to bound elements of our representation.
Recognize that the diamond norm has some simple bounds when considering the Liouvillian:

Lemma 2.2.
‖L‖� ≤ 2 ‖H‖ ≤ 2λ

Proof. Recognize by definition that:

‖L‖� = sup
ρ;‖ρ‖1=1

‖(L ⊗ 1)(ρ)‖1 (27)

Equivalently, recalling that H, ρ Hermitian and ‖A‖1 =
√
A†A:

sup
ρ;‖ρ‖1=1

‖Hρ− ρH‖1 = sup
ρ;‖ρ‖1=1

Tr[Hρ− ρH] (28)

Then, by the Von-Neumann inequality, we know:

Tr[Hρ] ≤ ‖H‖Tr ρ = ‖H‖ (29)

So:

‖L‖� ≤ 2 ‖H‖ (30)

Finally, we observe:

2 ‖H‖ ≤ 2λ (31)

Because we are operating with L2 norms, the Schatten-∞ norm actually seeks the largest singular value,
which we’ve set to λ by Equation (2). Thus,

‖L‖� ≤ 2 ‖H‖ ≤ 2λ (32)

As desired.

8

Recognize that we can separate the Liouvillian so that:

L =
∑
j

hjLj

By the decomposition of the Hamiltonian in Equation (2). Thus, we can also identify bounds on these
Liouvillian components:

Lemma 2.3.
‖Lj‖� ≤ 2 ‖Hj‖ ≤ 2

Proof. We can apply a similar technique as Lemma 2.2; simply note that because we chose Hj Hermitian
and hj so that the maximum singular value was 1, operator norm is at most 1, as desired.

Now that we have some fundamental definitions, we aim to demonstrate:

Theorem 2.3. Suppose τ = tλ
N . Given E =

∑
j pje

iτHjtρe−iτHt and UN = eiHt/Nρe−iHt/N , the difference
in the two channels δ = d�(E ,UN) will be bounded by:

δ ≤ 2λ2t2

N2
e2λt/N ≈ 2λ2t2

N2

For modest N .

Proof. By Theorem 2.2, we can represent E in terms of its Liouvillian:

E =
∑
j

pje
iτHjtρe−iτHjt =

∑
j

pje
τLj =

∑
j

hj
λ
eτLj (33)

In contrast, our default channel is:

UN = eiHt/Nρe−iHt/N = etL/N (34)

Now that we have Liouvillian representations for both of these channels, let’s express the first few terms
of each.

E =
∑
j

hj
λ

(∞∑
k=0

τkLkj
k!

)
=
∑
j

hj
λ

(
1+ τLj +

∞∑
k=2

τkLkj
k!

)
= 1 +

∑
j

hj
λ
τLj +

∑
j

hj
λ

∞∑
k=2

τkLkj
k!

= 1 +
τ

λ
L+

∑
j

hj
λ

∞∑
k=2

τkLkj
k!

(35)

Also, recall by hypothesis that τ = tλ
N . Thus,

E = 1+
t

N
L+

∑
j

hj
λ

∞∑
k=2

tkλkLkj
k!Nk

(36)

In contrast, the channel of the desired channel is:

9

UN = etL/N

=

∞∑
k=0

tkLk

k!Nk

= 1+
t

N
L+

∞∑
k=2

tkLk

k!Nk
(37)

Now, with these representations, we can create a bound on their diamond-norm difference. Consider:

‖UN − E‖� =

∥∥∥∥∥∥
∞∑
k=2

tkLk

k!Nk
−
∑
j

hj
λ

∞∑
k=2

tkλkLkj
k!Nk

∥∥∥∥∥∥
�

≤

∥∥∥∥∥
∞∑
k=2

tkLk

k!Nk

∥∥∥∥∥
�

+

∥∥∥∥∥∥
∑
j

hj
λ

∞∑
k=2

tkλkLkj
k!Nk

∥∥∥∥∥∥
�

(38)

By the Triangle Inequality. Now, by homogeneity:

=

∞∑
k=2

tk
∥∥Lk∥∥�
k!Nk

+
∑
j

hj
λ

∞∑
k=2

tkλk
∥∥Lkj∥∥�

k!Nk
(39)

Let’s bound the Liouvillian terms. Recognize that we can find upper bounds on both L,Lj :

Lemma 2.4 (Upper Bound on Liouvillian Representation).

‖Ln‖� ≤ (2λ)n

Proof. By sub-multiplicativity of the diamond norm, we know that:

‖Ln‖� ≤ ‖L‖
n
�

Furthermore, by Lemma 2.2, we know that:

‖L‖� ≤ 2λ

Thus,

‖Ln‖� ≤ (2λ)n

As desired.

Similarly, we can bound the Liouvillian components:

Lemma 2.5 (Upper Bound on Liouvillian Components).∥∥Lnj ∥∥� ≤ 2n

Proof. Again, by submultiplicativity, we have:∥∥Lnj ∥∥� ≤ ‖Lj‖n�
By Lemma 2.3, we have that:

‖Lj‖� ≤ 2

10

Thus, ∥∥Lnj ∥∥� ≤ 2n

As desired.

Now, by Lemma 2.4 and Lemma 2.5, we know that:

‖UN − E‖ ≤
∞∑
k=2

tk(2λ)k

k!Nk
+
∑
j

hj
λ

∞∑
k=2

tkλk2k

k!Nk

=
(

1 +
∑
j

hj
λ

) ∞∑
k=2

tk(2λ)k

k!Nk

= 2

∞∑
k=2

1

k!

(2λt

N

)k
(40)

Recall that we define the diamond norm to be double the distance, thus:

d(UN , E) ≤
∞∑
k=2

1

k!

(2λt

N

)k
(41)

Now, leveraging this tail bound:

Fact 3.
∞∑
k=2

xn

n!
≤ x2

2
ex

We yield a bound of:

d(UN , E) ≤ 1

2

(2λt

N

)2
e2λt/N =

2λ2t2

N2
e2λt/N ≈ 2λ2t2

N2
(42)

As desired.

We then extend Theorem 2.3 to model the behavior of QDRIFT on the full Hamiltonian:

Theorem 2.4.

d�(EN ,U) ≤ 2λ2t2

N
e2λt/N ≈ 2λ2t2

N

Again given modest N .

Proof. Because the diamond norm is subadditive under composition, we yield:

d(U , EN) ≤ Nd(UN , E)

=
2λ2t2

N
e2λt/N (43)

≈ 2λ2t2

N
(44)

Because 2λt/N ≈ 0 for large N . Thus, the error bound holds, as desired.

This error analysis culminates in Theorem 2.4, a significant result that dictates the overall error incurred
by using QDRIFT over typical Hamiltonian simulation methods. By representing our Hamiltonian with
Liouvillians and creating upper bounds for the superoperators, we compactly identified upper bounds for
the distance between the channels.

11

2.4 Evaluating the Impact of QDRIFT

Now that we have error bounds that scale in the size of N , we are interested in the gate counts required to
obtain adequate performance. We demonstrate simple gate bounds:

Theorem 2.5. QDRIFT performs in O(λ
2t2

ε) time.

Proof. Suppose we are given some ε > 0 maximum error. Then, the N required is:

ε ≈ 2λ2t2

N

N =
2λ2t2

ε
∈ O

(λ2t2
ε

)
(45)

As desired.

Now that we have an asymptotic bound, let’s compare it to Trotterization. Recall that Λ = maxj hj and
λ =

∑
hj . If many hj large, then λ ≈ ΛL, so by Theorem 2.5:

Corollary 2.1. For λ ≈ ΛL, QDRIFT scales in:

O
(L2(Λt)2

ε

)
(46)

If most hj � Λ, then we obtain a different bound:

Corollary 2.2. For λ ≈ Λ
√
L, QDRIFT scales in:

O
(L(Λt)2

ε

)
(47)

Referencing Corollary 2.1, Corollary 2.2, it’s apparent that QDRIFT performs well when Λ relatively
small. Recalling Trotterization’s scaling from Fact 1, QDRIFT scales better than both 1st/2nd order Trotter
in terms of L, meaning that more complex Hamiltonians may perform better with randomized compilation.

However, the tradeoff is a quadratic dependence upon t, whereas the best Trotter algorithms require
nearly linear complexity. So, when comparing QDRIFT and Trotter on the same Hamiltonian, there will
be some t where Trotter has less gate complexity. Experimental data indicates that this t exceeds typical
values. Consider the following graphs on propane, carbon dioxide, and ethane [1]:

As predicted, the slope of QDRIFT’s line is steeper than the best Trotter algorithms, representing
asymptotically worse behavior in t. However, real-world applications typically choose t = 6000 (the vertical
line). At this t, each of the molecules has better performance with QDRIFT than with any of the Trotter
techniques. Thus, in regimes with moderate to small t, QDRIFT could reduce the cost of Hamiltonian
simulation problems.

12

3 Early Experimental Results

3.1 Data

As an extension of the material, I also briefly implemented the randomized protocol in Q# (link here). To test
the implementation, every bond length from 0.2 to 2.85 (step size 0.05) was fed to the state prep algorithm.
The size of the new compiled Hamiltonian was set to 5; the original term has a size of 5 (L = 5, N = 5).
The Trotterized or compiled Hamiltonian was then applied, and phase estimation used to identify the energy
estimate. Each bond length had 10 trials to account for the probabilistic nature of both phase estimation
and randomized compilation. Some early experimental results are posted below:

Figure 1 compares the average energy estimates versus bond length. This result demonstrates the in-
creased variability that emerges from the randomization - the compiled algorithm (blue) is much more volatile
than the Trotterized algorithm (orange). However, it’s important to note that the randomized compilation
still enables the identification of the ground bond length (0.7).

Figure 2 compares the median energy estimates versus bond length. Again, the compiled algorithm (blue)
exhibits greater variability than the Trotterized algorithm (orange), though this is also influenced by the
variability of individual trials.

Figure 3 compares the min/max/median energy estimates for both the compiled and original algorithms
vs bond length. The variability of the compiled algorithm is pronounced in the graph, though it’s noticeable
that even the original algorithm has significant variability that is incurred by failures in the phase estimation.

3.2 Discussion and Applicability

As implied earlier, the strength of compilation exists when L large, as gate count has better scaling. In the
case of H2, L = 5 is hardly large. So, we expect this error bound to narrow as L grows; similarly, we expect
gate count to fall relative to the uncompiled algorithm.

We must also consider potential errors. One source is precision - Robust Phase Estimation, the technique
used for phase estimation, has a qubit/gate requirement that scales with phase precision. Furthermore,
the technique is inherently probabilistic. These are only two potential sources of error that accentuate the
variability of the compiled Hamiltonian, but a physical chip could be subject to a multitude of other errors.

Another factor to consider is gate counts. Due to both technical and time limitations, this was not
implemented concurrently to the accuracy analysis. Again, this analysis is preliminary and
should be considered as such. To compare gate costs, we compare the differences in the number of
rotation gates necessary (ignoring CNOTs, Paulis, and other gates). Q#’s estimates indicate that the
number of rotation gate counts are equivalent for N = L; thus, as L increases, we suspect that the scaling
will continue to improve for the compiled Hamiltonian, as the necessary N will be less compared to the
uncompiled algorithm. Further analysis on Hamiltonians with other term types, like PQRS and PQQR
terms, could also yield interesting results with respect to gate costs [5].

4 Conclusion

This paper explored Earl Campbell’s Randomized Hamiltonian Compilation method (‘QDRIFT’). Random-
ized compilation operates by probablistically selecting the component Hj to simulate, instead of simulating
all of H. By finding appropriate τ for tuning the eiτHj gates, we were able to compare the quantum channels
of the randomly compiled circuit versus the fully Trotterized circuit. Then, we demonstrated asymptotic
bounds that show better scaling with respect to a Hamiltonian’s complexity, with the tradeoff of a greater
dependence on simulation time.

After demonstrating theoretical tradeoffs, we performed a brief implementation of QDRIFT in Q#.
While the resultants were quite variable, they show that QDRIFT is within the general neighborhood of the
uncompiled algorithm. Further research is necessary to identify the performance of QDRIFT on physical
devices and/or with larger Hamiltonians.

While QDRIFT does not address the underlying complexity of Hamiltonian simulations and challenges for
near-term devices, this technique reduces gate counts for complex simulations. Furthermore, it suggests the
potential for additional pre-processing to improve performance, even in the presence of asymptotic tradeoffs.

13

https://github.com/christopherkang/H2-599-Sample

Figure 1: Average Energy Estimates vs Bond Length over Compiled and Uncompiled Hamiltonians

14

Figure 2: Median Energy Estimates vs Bond Length over Compiled and Uncompiled Hamiltonians

Figure 3: Min/Med/Max Energy Estimates vs Bond Length over Compiled and Uncompiled Hamiltonians

15

References

[1] Earl Campbell. “Random Compiler for Fast Hamiltonian Simulation”. In: Phys. Rev. Lett. 123 (7 Aug.
2019), p. 070503. doi: 10.1103/PhysRevLett.123.070503. url: https://link.aps.org/doi/10.
1103/PhysRevLett.123.070503.

[2] Andrew M. Childs, Aaron Ostrander, and Yuan Su. “Faster quantum simulation by randomization”.
In: Quantum 3 (Sept. 2019), p. 182. issn: 2521-327X. doi: 10.22331/q- 2019- 09- 02- 182. url:
http://dx.doi.org/10.22331/q-2019-09-02-182.

[3] Microsoft. Trotter-Suzuki Formulas. url: https://docs.microsoft.com/en-us/quantum/libraries/
chemistry/concepts/algorithms.

[4] Mark E. Tuckerman. Time evolution of the density operator. url: http://www.nyu.edu/classes/
tuckerman/stat.mechII/lectures/lecture_11/node3.html.

[5] James D. Whitfield, Jacob Biamonte, and Alán Aspuru-Guzik. “Simulation of electronic structure
Hamiltonians using quantum computers”. In: Molecular Physics 109.5 (Mar. 2011), pp. 735–750. issn:
1362-3028. doi: 10.1080/00268976.2011.552441. url: http://dx.doi.org/10.1080/00268976.
2011.552441.

16

https://doi.org/10.1103/PhysRevLett.123.070503
https://link.aps.org/doi/10.1103/PhysRevLett.123.070503
https://link.aps.org/doi/10.1103/PhysRevLett.123.070503
https://doi.org/10.22331/q-2019-09-02-182
http://dx.doi.org/10.22331/q-2019-09-02-182
https://docs.microsoft.com/en-us/quantum/libraries/chemistry/concepts/algorithms
https://docs.microsoft.com/en-us/quantum/libraries/chemistry/concepts/algorithms
http://www.nyu.edu/classes/tuckerman/stat.mechII/lectures/lecture_11/node3.html
http://www.nyu.edu/classes/tuckerman/stat.mechII/lectures/lecture_11/node3.html
https://doi.org/10.1080/00268976.2011.552441
http://dx.doi.org/10.1080/00268976.2011.552441
http://dx.doi.org/10.1080/00268976.2011.552441

	Introduction to Trotterization
	Problem: Hamiltonian Simulation
	Trotterization

	Randomized Compilers for Hamiltonians
	Algorithm: QDRIFT
	Identifying
	Bounding Higher Order Terms
	Evaluating the Impact of QDRIFT

	Early Experimental Results
	Data
	Discussion and Applicability

	Conclusion

